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Abstract. We establish reflection positivity for Gibbs trace states de-
fined by a certain class of Hamiltonians that describe the interaction
of Majoranas on a lattice. These Hamiltonians may include many-body
interactions, as long as the signs of the associated coupling constants
satisfy certain restrictions. We show that reflection positivity holds on
an even subalgebra of Majoranas.

I. Introduction

In this paper we prove reflection positivity for trace functionals defined by
a certain class of interactions of (neutral) Majoranas on a lattice. Earlier
results on reflection positivity for fermions in the framework of quantum sta-
tistical mechanics focus on the case of charged excitations. In §III we isolate
conditions that entail reflection positivity on an interaction Hamiltonian H,
expressed in terms of Majoranas. Our main result is Theorem 3 of §VI,

0 6 Tr(Aϑ(A) e−H) , (I.1)

which is valid for certain functions A of Majoranas, and for a reflection ϑ.
Some related bounds are given in §VIII and §IX.

Our formulation and proof of Theorem 3 in §VI involve familiar meth-
ods, but they also require new ideas. As the present paper describes inter-
actions without charge, one does not have the useful charge-conservation
symmetry to aid in their analysis. In this case we establish reflection positiv-
ity on an even sub-algebra of fermions. The corresponding positivity is not
valid on the full fermionic algebra for a half-space on one side of the reflection
plane, as we show with an explicit counterexample in (VI.3).

Recently the present authors have studied certain quantum spin inter-
actions, which are of interest in quantum information theory [1, 10], where
we apply the reflection positivity results of this present paper.

Reflection positivity has played an important role in analysis of quan-
tum fields as well as the analysis of classical and quantum spin systems.
Osterwalder and Schrader discovered reflection positivity in their study of
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classical fields on Euclidean space [14]; it provided the key notion of quanti-
zation and allowed one to go from a classical field to a quantum-mechanical
Hilbert space and a positive Hamiltonian acting on that Hilbert space.

Multiple reflection bounds, based on reflection positivity for classical
fields, played a crucial role in Glimm, Jaffe, and Spencer’s mathematical
proof [8] of the physicists’ assumption that phase transitions and symme-
try breaking exist in quantum field theory. This first example of a phase
transition in field theory [8] concerned breaking of a discrete Z2 symmetry.
Reflection positivity also turned out be be extremely useful in the analy-
sis of lattice models for boson and fermion interactions by Fröhlich, Simon,
Spencer, Dyson, Israel, Lieb, Macris, Nachtergale, and others [4, 2, 6, 12, 13].
This included the analysis of phase transitions and the breaking of certain
continuous symmetry groups in lattice spin systems. In addition, reflection
positivity was crucial in the study by Osterwalder and Seiler of the Wilson
action for lattice gauge theory [15].

II. Definitions and Basic Properties

Majoranas are a self-adjoint representation of a Clifford algebra with 2N
generators. We generally denote them by ci, for i = 1, . . . , 2N . They satisfy

{ci, cj} = 2δij , c∗i = ci , for i, j = 1, . . . , 2N . (II.1)

One can realize 2N Majoranas in a standard way on a complex Hilbert
space of dimension 2N , and we use this representation. Start with the real
Hilbert space Hr = ∧RN , the real exterior algebra over RN . Let a∗j denote

the linear transformation on Hr given the exterior product ej∧ with the jth

basis element ej in RN . These operators and their adjoint aj are N fermionic
creation and annihilation operators. Let H denote the complexification of Hr
and define the Majorana operators c2j−1, c2j as linear combinations, c2j−1 =
aj + a∗j and c2j = i

(
aj − a∗j

)
. Thus our odd indexed Majoranas are real and

the even Majoranas are purely imaginary.
We consider the index j of the Majoranas to have a geometric signifi-

cance as an element of a simple cubic lattice Λ = Λ−∪Λ+. We assume that Λ
is invariant under a reflection ϑ in a plane Π normal to a coordinate direction
and intersecting no sites in Λ, so ϑ(Λ) = Λ. Here Λ± denote the sites on the
± side of Π. We assume that the reflection ϑ maps Λ± into Λ∓.

For any subset B ⊂ Λ, let A(B) denote the algebra generated by the
cj ’s with j ∈ B. Let A = A(Λ) and A± = A(Λ±). Also introduce the even
algebras A(B)even, as the subset of A(B) generated by even monomials in the
cj ’s, with j ∈ B. Note that Aeven is not abelian, but Aeven(B) commutes with
Aeven(B′) when B ∩ B′ = ∅.

II.1. Anti-Unitary Transformations

An antilinear transformation Θ on the finite-dimensional complex Hilbert
space H has the property Θ(f + λg) = Θf + λ̄Θg for f, g ∈ H and λ ∈ C.
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Here λ̄ denotes the complex conjugate of λ. Assuming H has the hermitian
inner product 〈 · , · 〉, the adjoint Θ∗ of Θ is the anti-linear transformation

〈f,Θ∗g〉 = 〈g,Θf〉 . (II.2)

Also Θ is said to be anti-unitary if for all f, g ∈ H,

〈f, g〉 = 〈Θg,Θf〉 = 〈Θ∗g,Θ∗f〉 . (II.3)

As a consequence an anti-unitary satisfies ΘΘ∗ = Θ∗Θ = I or Θ∗ = Θ−1.
We are especially interested in an anti-unitary representation of the

reflection ϑ on H, which we also denote by ϑ. The anti-unitary ϑ defines an
anti-linear map on A, with ϑ : A± → A∓ with the property

ϑ(cj) = ϑcjϑ
−1 = cϑj . (II.4)

By the general properties of the anti-unitary ϑ,

ϑ(AB) = ϑ(A)ϑ(B) , and ϑ(A)∗ = ϑ(A∗) . (II.5)

In addition

Tr(ϑ(A)) = Tr(A) , for all A ∈ A . (II.6)

Thus the Clifford algebra relations are also satisfied by ϑ(cj),

{ϑ(ci), ϑ(cj)} = 2δijI . (II.7)

It is no complication to allow a set of n Majoranas at each lattice site i.

III. Hamiltonians

We consider self-adjoint Hamiltonians of the form

H = H− +H0 +H+ , (III.1)

where H− = H∗− ∈ Aeven
− and H+ = H∗+ ∈ Aeven

+ . The operator H0 = H∗0
denotes a coupling across the reflection plane Π. Let I = {i1, . . . , ik} denote
a subset of points in Λ− with cardinality n(I) = |I|. Define

σ(I) = n(I) mod 2 . (III.2)

We assume that H0 has the form

H0 =
∑
I

JIϑI i
σ(I) CI ϑ(CI) , where JIϑI ∈ R , (III.3)

and CI = ci1ci2 · · · cik ∈ A−.

Remark: The Hamiltonian H0 is self-adjoint and reflection-symmetric,

H0 = H∗0 = ϑ(H0) . (III.4)

Each term in the sum (III.3) defining H0 is self-adjoint. In fact

(CI ϑ(CI))
∗

= ϑ(CI)∗ C∗I = (−1)|I| CI ϑ(CI) . (III.5)

So from iσ(I) = (−1)σ(I) iσ(I), and (−1)σ(I) = (−1)|I|, we infer(
iσ(I) CI ϑ(CI)

)∗
= iσ(I) CI ϑ(CI) . (III.6)
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Likewise

ϑ(H0) =
∑
I

(−1)|I| iσ(I) ϑ(CI)CI =
∑
I

iσ(I) CI ϑ(CI) . (III.7)

Here we use the fact that the |I| Majoranas in CI all anti-commute with the
ones in ϑ(CI), yielding another factor (−1)|I| in the final equality.

Assumptions on the Couplings: We require that the sign of the couplings
JIϑI in (III.3) satisfy

all JIϑI 6 0 , or all JIϑI > 0 , for terms with σ(I) = 1 ,
all JIϑI 6 0 , for terms with σ(I) = 0 .

(III.8)

We restrict the sign of couplings only for interaction terms (III.3) that
cross the plane Π. Nearest-neighbor two-body interactions have σ(I) = 1.

IV. Monomial Basis

The 2N operators ci yield monomials of the form Mβ = ci1ci2 · · · cij of degree
j, with i1 < i2 < · · · ij . (Other orders of the c’s are the same up to a ± sign.)

Denote by β = 0 the monomial M0 = I. There are
(

2N
j

)
such monomials Mβ

of degree j, so there are a total of 22N such monomials. As 22N = (dimH)
2
,

these monomials are a candidate for a basis of the space of matrices acting
on H.

Proposition 1. If β 6= 0, the monomials Mβ have vanishing trace, Tr (Mβ) =
0. Any linear transformation A on H can be written in terms of the basis Mβ

as

A =
∑
β

aβMβ , where aβ = 2−N Tr
(
M∗βA

)
. (IV.1)

The monomials Mβ are an irreducible set of matrices.

Proof. If degMβ is odd, there is at least one of the c’s, say cj , not contained
in Mβ . Thus

Tr (Mβ) = Tr (cjcjMβ) = Tr (cjMβcj)

= (−1)degMβ Tr (Mβ) = −Tr (Mβ) = 0 .

On the other hand, if degMβ = 2k > 0, and cj does occur in Mβ , then also

Tr (Mβ) = Tr
(
c2jMβ

)
= Tr (cjMβcj)

= (−1)degMβ−1 Tr (Mβ) = −Tr (Mβ) = 0 .

Thus we have verified the first statement in the proposition. Also M∗βMβ = I,

and for β 6= β′, one has M∗β′Mβ = ±Mγ for some γ 6= 0.

Suppose that there are coefficients aβ ∈ C such that
∑
β aβMβ = 0.

Then for any β′, one has M∗β′
∑
β aβMβ =

∑
β aβM

∗
β′Mβ = 0. Taking the

trace shows that aβ′ = 0, so the Mβ are actually linear independent. As
there are 22N matrices Mβ , they are a basis for all matrices on H.
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Expanding an arbitrary matrix A in this basis, we calculate the coeffi-
cients in (IV.1) using Tr I = 2N . As the set of all matrices on H is irreducible,
the basis Mβ is also irreducible. �

V. Reflection Positivity

In this section we consider traces on the Hilbert space H = ∧CN .

Proposition 2 (Reflection Positivity I). Consider an operator A ∈ A±, then

Tr(Aϑ(A)) > 0 . (V.1)

Proof. The operator A ∈ A± can be expanded as a polynomial in the basis
Mβ of Proposition 1. The monomials that appear in the expansion all belong
to A±. Write

A =
∑
β

aβMβ , and ϑ(A) =
∑
β

aβ ϑ(Mβ) . (V.2)

We now consider the case A ∈ A−. For Mβ = ci1 · · · cik , define Mϑβ =
cϑi1 · · · cϑik . One then has

Tr (Aϑ(A)) =
∑
β,β′

aβ aβ′ Tr (Mβ ϑ(Mβ′)) =
∑
β,β′

aβ aβ′ Tr (MβMϑβ′) .

(V.3)
Since Mβ ∈ A− and Mϑβ′ ∈ A+, they are products of different Majoranas.
We infer from Proposition 1 that the trace vanishes unless β = ϑβ′ = 0. We
have,

Tr (Aϑ(A)) = 2N |a0|2 > 0 , (V.4)

as claimed. �

This reflection positivity allows one to define a pre-inner product on A±
given by

〈A,B〉RP = Tr(Aϑ(B)) . (V.5)

This pre-inner product satisfies the Schwarz inequality

|〈A,B〉RP|2 6 〈A,A〉RP 〈B,B〉RP . (V.6)

In the standard way, one obtains an inner product 〈Â, B̂〉RP and norm ‖Â‖RP

by defining the inner product on equivalence classes Â = {A + n} of A’s,
modulo elements n of the null space of the functional (V.5) on the diagonal.
In order to simplify notation, we ignore this distinction.
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VI. The Main Result

Here we consider reflection positivity of the functional

Tr(Aϑ(B) e−H) , for A,B ∈ Aeven
± , (VI.1)

that is linear in A and anti-linear in B.

Theorem 3 (Reflection Positivity II). Consider A ∈ Aeven
± and H of the form

(III.1), with H+ = ϑ(H−). Then the functional (VI.1) is positive on the
diagonal,

0 6 Tr(Aϑ(A) e−H) . (VI.2)

Remark: The functional (VI.2) does not satisfy reflection positivity on the
full fermonic algebra A±. Even for N = 1, with H± = 0, H0 = −i c1ϑ(c1),
and A = c1, reflection positivity fails. In this case

Tr(Aϑ(A) e−H) = −2i sinh 1 , (VI.3)

is purely imaginary. A similar argument shows that reflection positivity fails
in case the coupling constants do not obey the restrictions (III.8).

If the interaction terms in H0 all have σI = 0, then the functional (VI.2)
vanishes on odd elements of A, and in this case reflection-positivity extends
trivially to the full algebra.

There is a natural second reflection positivity condition connected with
the functional

Tr(ϑ(A)B e−H) , for A,B ∈ Aeven
± , (VI.4)

in place of (VI.2). The properties (II.5)–(II.6) ensure that

Tr(ϑ(A)B e−H) = Tr(Aϑ(B) e−ϑ(H)) . (VI.5)

Since the assumed properties for H hold also for ϑ(H) with H∓ replaced by
ϑ(H±), we infer the following corollary.

Corollary 4 (Reflection Positivity III). Consider A ∈ Aeven
± and H of the

form (III.1), with H+ = ϑ(H−). Then the functional (VI.4) is positive on
the diagonal,

0 6 Tr(ϑ(A)Ae−H) . (VI.6)

Proof of Theorem 3. Our argument is motivated by [2, 6, 12], but has its own
special features. Take A ∈ Aeven

− . Use the Lie product formula for matrices
α1, α2, and α3 in the form

eα1+α2+α3 = lim
k→∞

(
(1 + α1/k)eα2/keα3/k

)k
. (VI.7)

This is norm-convergent for matrices. Take α1 = −H0, α2 = −H−, and
α3 = −H+ = −ϑ(H−) in (VI.7).

Label the non-empty subsets of Λ− by I`, for ` = 1, . . . , L − 1, with
L = 2|Λ−|, and the empty subset ∅ by I0. Let H0 be defined in (III.3), with
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the sum ranging over the non-empty subsets. Write

H0 =

L−1∑
`=1

JI` ϑI` i
σ(I`) CI` ϑ(CI`) . (VI.8)

Using (VI.7),

Aϑ(A) e−H = lim
k→∞

Aϑ(A)
(
e−H

)
k
, (VI.9)

where(
e−H

)
k

=

(
(I −

L−1∑
`=1

JI` ϑI` i
σ(I`) CI` ϑ(CI`)/k) e−H−/k e−ϑ(H−)/k

)k
.

(VI.10)
One can include the term I in the sums in (VI.10) by defining −J∅ϑ∅ = k,
C∅ = Cϑ∅ = I, and n(I`0) = n(∅) = 0. Then

(
e−H

)
k

=
1

kk

(
−
L−1∑
`=0

JI` ϑI` i
σ(I`) CI` ϑ(CI`) e

−H−/k e−ϑ(H−)/k

)k

=

L−1∑
`1,...,`k=0

i
∑k
i=1 σ(I`i ) c`1,...,`k Y`1,...,`k . (VI.11)

In the second equality we have expanded the expression into a linear combi-
nation of Lk terms with coefficients

c`1,...,`k =
1

kk

k∏
i=1

(−JI`i ϑI`i ) , (VI.12)

and with

Y`1,...,`k = CI`1
ϑ(CI`1

) e−H−/k e−ϑ(H−)/k · · ·CI`k
ϑ(CI`k

) e−H−/k e−ϑ(H−)/k .

(VI.13)
Using this expansion, (VI.9) can be written

Aϑ(A)
(
e−H

)
k

=

L−1∑
`1,...,`k=0

i
∑k
i=1 σ(I`i ) c`1,...,`k Aϑ(A)Y`1,...,`k . (VI.14)

Lemma 5. The trace Tr(Aϑ(A)Y`1,...,`k) = 0 vanishes unless

k∑
i=1

n(I`i) = 2N , (VI.15)

is an even integer. In this case,

k∑
i=1

σ(I`i) = 0 mod 2 , and 0 6 c`1,...,`k . (VI.16)

Proof. In order to establish (VI.15), recall that we assume that the factor A
in Aϑ(A)Y`1,...,`k is an element of Aeven

− . Therefore we can expand it as a sum
of the form (IV.1), with all the basis elements Mβ ∈ Aeven

− . As H− ∈ Aeven
− ,
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one can also expand each factor e−H−/k as a sum of even basis elements
Mβ ∈ Aeven

− . Each interaction term, defined as a summand CI`j
ϑ(CI`j

) in

H0, contains n(I`j ) Majoranas in A− and an equal number in A+.

We infer from Proposition 1 that the trace of Aϑ(A)Y`1,...,`k vanishes
unless each ci occurs in Aϑ(A)Y`1,...,`k an even number of times. Conse-
quently any Aϑ(A)Y`1,...,`k with non-zero trace must have an even number
of Majoranas in A−. In other words, the condition (VI.15) must hold. This
ensures that the number of odd n(I`j ) is even. As σ(I`j ) = n(I`j ) mod 2,
the sum of σ(I`j )’s equals 0 mod 2.

We next show that 0 6 c`1,...,`k . Suppose the interaction term CI`j
ϑ(CI`j

)

occurs as a factor in Aϑ(A)Y`1,...,`k and has σ(I`j ) = 0. Then the restriction
on the coupling constants (III.8) means that 0 6 −JI`j ϑI`j . On the other

hand, the condition (VI.16) on σ(I`j ) means that an even number of inter-
action terms in Aϑ(A)Y`1,...,`k have σ(I`j ) = 1. From the restriction (III.8),
we infer that these couplings all have the same sign. Hence the product of the
negative of these coupling constants is also positive. Finally we use 0 < J∅ϑ∅
to complete the proof. �

Lemma 6. Assume relations (VI.15)–(VI.16). Then the Y`1,...,`k in (VI.13)
satisfy the identities

Y`1,...,`k = i−
∑k
i=1 σ(I`i ) D`1,...,`k ϑ(D`1,...,`k) , (VI.17)

where

D`1,...,`k = CI`1
e−H−/k CI`2

e−H−/k · · ·CI`k
e−H−/k ∈ Aeven

− . (VI.18)

Proof. As e−H+/k = e−ϑ(H−)/k = ϑ(e−H−/k), the product Y`1,...,`k in (VI.13)
differs from the product D`1,...,`k ϑ(D`1,...,`k), only in the order of its factors.
In order to transform from one product into the other, we need to move all
the Majorana operators of Y`1,...,`k that are localized in A− to the left, and
all operators of Y`1,...,`k in A+ to the right. We move each operator cj as
far as possible to the left, without permuting the order of any operator in
A−. As H+ ∈ Aeven

+ , it commutes with each cj ∈ A−. Likewise H− ∈ Aeven
− ,

it commutes with each cj ∈ A+. This procedure neither changes any of the

exponentials e−H±/k. It gives rise to a minus sign only each time we permute
a cj in an interaction term to the left past an operator ϑ(cj′) in another
interaction term.

We count the minus signs that occur from permuting the cj ’s in the
interaction terms. In order to simplify notation, let n`i = n(I`i). The term
CI`1

ϑ(CI`1
) contributes no minus sign. The term CI`2

ϑ(CI`2
) contributes

n`2n`1 minus signs. The term CI`3
ϑ(CI`3

) contributes n`3(n`1 + n`2) minus

signs. The term CI`4
ϑ(CI`4

) contributes n`4(n`1 + n`2 + n`3) minus signs,
and so on. Finally, the term

CI`k
ϑ(CI`k

)
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contributes n`k
∑k−1
i=1 n`i minus signs. Adding these numbers, one obtains a

total number of minus signs equal to

1

2

k∑
i,i′=1

n`i n`i′ −
1

2

k∑
i=1

n2
`i =

1

2

(
k∑
i=1

n`i

)2

− 1

2

k∑
i=1

n2
`i = 2N2 − 1

2

k∑
i=1

n2
`i .

(VI.19)
Here N is defined in (VI.15). We infer that(

2N2 − 1

2

k∑
i=1

n2
`i

)
mod 2 = −1

2

k∑
i=1

n2
`i mod 2 . (VI.20)

The overall sign arising from the permutation of the cj ’s in going from
(VI.13) to (VI.17) is (−1) raised to the power (VI.20). This is

(−1)−
1
2

∑k
i=1 n

2
`i = i−

∑k
i=1 n

2
`i = i−

∑k
i=1(n`i mod 2) = i−

∑k
i=1 σ`i . (VI.21)

In the second equality we use an identity for natural numbers n, namely

n2 mod 4 = n mod 2 . (VI.22)

In the final equality we use the definition σ`i = n`i mod 2. �

Completion of the proof of Theorem 3. In case Tr(Aϑ(A)Y`1,...,`k) 6= 0, we in-
fer from(VI.14) along with Lemmas 5 and 6 and the fact that ϑ(A) commutes
with D`1,...,`k that

Tr
(
Aϑ(A) e−H

)
= lim
k→∞

L−1∑
`1,...,`k=0

c`1,...,`k Tr (AD`1,...,`kϑ (AD`1,...,`k)) .

(VI.23)
Notice that the factors of i in (VI.14) cancel against the factors of i in (VI.17),
so there are no factors of i in (VI.23). In the last statement of Lemma 5, we
have established that 0 6 c`1,...,`k . And from Proposition 2, we infer that
0 6 Tr (AD`1,...,`kϑ (AD`1,...,`k)). Thus (VI.23) is a sum of positive terms.
This completes the proof in the case that A ∈ Aeven

− .

The remaining case is A ∈ Aeven
+ . Then one has A = ϑ(Ã) with Ã ∈

Aeven
− . As A commutes with ϑ(A), we infer that Aϑ(A) = Ã ϑ(Ã), and

Tr
(
Aϑ(A) e−H

)
= Tr

(
Ã ϑ(Ã) e−H

)
> 0 as a consequence of the case al-

ready established. �

VI.1. Reflection-Positive Inner Product

Let us introduce the modified pre-inner product on Aeven
± defined by the

functional (VI.2). Let

〈A,B〉RP = Tr(Aϑ(B) e−H) . (VI.24)

Denote the corresponding semi-norm by ‖A‖RP.
The theorem shows that one has an elementary reflection positivity

bound, arising from the Schwarz inequality. Also ϑ acts as anti-unitary trans-
formation on the Hilbert space Aeven

± with inner product (VI.24).
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Corollary 7. For A,B ∈ Aeven
± , one has

|〈A,B〉RP | 6 ‖A‖RP ‖B‖RP , (VI.25)

and

〈A,B〉RP = 〈ϑ(B), ϑ(A)〉RP , so ‖ϑ(A)‖RP = ‖A‖RP . (VI.26)

VII. Relation to Spin Systems

It is well-known that the ferromagnetic Ising model is reflection-positive, but
the quantum Heisenberg model is not reflection-positive [6]. We can also infer
these facts from the point of view of Majoranas.

One can consider the infinitesimal rotation matrices in the (α, β)-plane,
Σαβ = −i

2

[
γα, γβ

]
, with γα the Euclidean Dirac matrices on 4-space with

coordinate labels α, β ∈ {0, x, y, z}. Here we choose those Dirac matrices γα

to be four independent Majoranas at each lattice site j, namely γαj . One often

denotes these Majoranas as cj , b
x
j , b

y
j , b

z
j . The three operators Σ0α

j generating

rotations in the three planes (0, α) at site j, yield the representation of a
quantum spin ~σj at site j, with components

σαj = Σ0α
j = i bαj cj . (VII.1)

This representation of spins has become standard in the condensed-matter
literature [11].

As σαj σ
β
j = bαj b

β
j , this representation agrees with the algebra of the

Pauli matrices only when projected to one chiral copy. This means that one
projects from the Hilbert space H of the Majoranas, onto the “physical”
subspace in which each of the mutually commuting operators γ5

j = bxj b
y
j b
z
jcj

has the eigenvalue +1. Note that each γ5
j commutes with all the ~σj′ .

We use a real representation for bxj and bzj , and an imaginary represen-

tation for byj and cj . This leads to the σxj and σzj being real, while the σyj
are imaginary—namely the usual reality properties for the Pauli spin matri-
ces. However, one could also use a real representation for byj and cj , and an

imaginary representation for bxj and bzj .
1

One can represent a classical Ising spin as the diagonal matrix σzj =
i bzj cj at each lattice site. So for a reflection ϑ across a nearest-neighbor bond
(ij), a ferromagnetic Ising interaction term is a positive multiple of

− σzi σzj = bzi cib
z
jcj = −bzi ci ϑ (bzi ci) . (VII.2)

This satisfies condition (III.8) with k = 2 and σ = 0, so the ferromagnetic
Ising interaction is reflection-positive.

1 These three operators correspond to half of the generators Σαβj , and we use this represen-

tation. The other three generators Σαβj for α, β 6= 0 act the same on both chiral copies, and

as they are isomorphic on each copy they yield an alternative representation σxj = −ibyj b
z
j ,

etc., which is also sometimes used in the condensed-matter literature.
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Similarly, the ferromagnetic quantum “rotator” Hamiltonian has an in-
teraction term that is a positive multiple of

− σxi σxj − σzi σzj = −bxi ci ϑ (bxi ci)− bzi ci ϑ (bzi ci) . (VII.3)

This also satisfies condition (III.8), and so the ferromagnetic rotator is reflection-
positive.

The corresponding quantum Heisenberg interaction term is

−~σi·~σj = −σxi σxj−σ
y
i σ

y
j−σ

z
i σ

z
j = −bxi ci ϑ (bxi ci)+b

y
i ci ϑ (byi ci)−b

z
i ci ϑ (bzi ci) .

(VII.4)
This does not satisfy (III.8), since the coefficient of the term byi ci ϑ (byi ci)
arising from −σyi σ

y
j is positive, while the coefficients of the other two terms in

(VII.4) are negative. Hence the Heisenberg interaction, with either a positive
or a negative overall coupling constant, is not reflection-positive.

VIII. Reflection Bounds

The use of reflection bounds and their iteration has many applications, both
in statistical physics and quantum field theory. Here we study some bounds
which follow from the results of Section V, that we apply in [1].

Let us introduce two pre-inner products 〈 · , · 〉RP± on the algebras Aeven
± ,

corresponding to two reflection symmetric Hamiltonians. Let

〈A,B〉RP− = Tr(Aϑ(B) e−H) , for H = H− +H0 + ϑ(H−) . (VIII.1)

Similarly define

〈A,B〉RP+ = Tr(Aϑ(B) e−H) , for H = ϑ(H+) +H0 +H+ . (VIII.2)

As previously, one can define inner products on equivalence classes, yielding
norms ‖ · ‖.

Proposition 8 (RP-Bounds). Let H = H− +H0 +H+ with H± ∈ Aeven
± and

H0 of the form (III.3). Then∣∣Tr(Aϑ(B) e−H)
∣∣ 6 ‖A‖RP− ‖B‖RP+ , for A,B ∈ Aeven

− . (VIII.3)

Also∣∣Tr(Aϑ(B) e−H)
∣∣ 6 ‖A‖RP+ ‖B‖RP− , for A,B ∈ Aeven

+ . (VIII.4)

In particular for A = B = I,

Tr(e−H) 6 Tr(e−(H−+H0+ϑ(H−)))1/2 Tr(e−(ϑ(H+)+H0+H+))1/2 . (VIII.5)

Proof. The proof of (VIII.3) follows the proof of Theorem 3. Use the ex-
pression (VI.10) to write Aϑ(B)

(
e−H

)
k
, which converges to Aϑ(B) e−H as
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k →∞, namely

Tr
(
Aϑ(B)

(
e−H

)
k

)
=

L−1∑
`1,...,`k=0

c`1,...,`k Tr
(
AD−`1,...,`kϑ

(
BD+

`1,...,`k

))

=

L−1∑
`1,...,`k=0

c`1,...,`k〈AD
−
`1,...,`k

, BD+
`1,...,`k

〉RP .

(VIII.6)

The form 〈 · , · 〉RP in (VIII.6) is defined in (V.5). The difference is that now
the terms contain ϑ(B) in place of ϑ(A), and D±`1,...,`k depends on H±. Thus

the constants c`1,...,`k are given by (VI.12), the matrices D−`1,...,`k ∈ Aeven
− are

given by (VI.18), and

ϑ(D+
`1,...,`k

) = ϑ(CI`1
)e−H+/kϑ(CI`2

)e−H+/k · · ·ϑ(CI`k
)e−H+/k ∈ Aeven

+ .

(VIII.7)
Lemma 5 depends only on the form of H0 and the fact that H± ∈ Aeven

± .
Thus the lemma applies in this case as well. With these substitutions, the
proof of Lemma 6 also applies.

To establish (VIII.3), note that the product of couplings c`1,...,`k defined
in (VI.12) are independent of A and B, so as before we infer from Lemma 5
that c`1,...,`k > 0 whenever 〈AD−`1,...,`k , BD

+
`1,...,`k

〉RP 6= 0. Use the Schwarz

inequality for 〈 · , · 〉RP and the positivity of c`1,...,`k to obtain

∣∣Tr
(
Aϑ(B) e−H

)∣∣ =

∣∣∣∣∣∣ lim
k→∞

L−1∑
`1,...,`k=0

c`1,...,`k〈AD
−
`1,...,`k

, BD+
`1,...,`k

〉RP

∣∣∣∣∣∣
6 lim

k→∞

L−1∑
`1,...,`k=0

c
1/2
`1,...,`k

〈AD−`1,...,`k , AD
−
`1,...,`k

〉1/2RP

× c
1/2
`1,...,`k

〈BD+
`1,...,`k

, BD+
`1,...,`k

〉1/2RP

6 lim
k→∞

 L−1∑
`1,...,`k=0

c`1,...,`k〈AD
−
`1,...,`k

, AD−`1,...,`k〉RP

1/2

×

 L−1∑
`1,...,`k=0

c`1,...,`k 〈BD
+
`1,...,`k

, BD+
`1,...,`k

〉RP

1/2

= 〈A,A〉1/2RP− 〈B,B〉
1/2
RP+ = ‖A‖RP− ‖B‖RP+ . (VIII.8)

This completes the proof of relation (VIII.3).
When A,B ∈ Aeven

+ , substitute in the left-hand side of (VIII.4) A =

ϑ(Ã) and B = ϑ(B̃) with Ã, B̃ ∈ Aeven
− . Since A and B commute with ϑ(A)

and ϑ(B), ∣∣Tr(Aϑ(B) e−H)
∣∣ =

∣∣∣Tr(B̃ ϑ(Ã) e−H)
∣∣∣ . (VIII.9)
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Replacing H− by ϑ(H+) and ϑ(H−) by H+ in the bound (VIII.3) completes
the proof of (VIII.4). �

IX. Multiple-Reflection Bounds

One obtains useful multiple-reflection bounds by iterating the reflection bounds
of §VIII. A huge literature exists on this subject, after the early papers
[14, 3, 9, 8, 4, 5, 7]. One sometimes calls such bounds checkerboard or chess-
board estimates, as well as multiple-reflection bounds. These estimates are
used to study and to prove the existence of the thermodynamic limit, as well
as to prove the existence of phase transitions in that limit.

Not to be tied up in details, let us give a very simple example. We study
a reflection-positive interaction of the type in §III. We start in a bounded,
periodic lattice. In the notation of Proposition 8, we assume homogeneity
of all interactions. Thus H has a similar decomposition (III.1) wherever one
places the reflection plane.

We assume that the interaction is translation-invariant under lattice
translations along each axis of the lattice labelled i = 1, . . . , d. We assume
that the lattice and the interaction is symmetric under reflection in each plane
Π that bisects the lattice by bisecting bonds oriented along a coordinate axis
and normal to Π. We also assume the existence of a thermodynamic limit
with a translation-invariant and reflection-invariant, normalized expectation
〈 · 〉.

Let � denote an even function of Majoranas localized in a small cube
with side length n. We choose the first reflection plane so that it is parallel to a
face of � and distance 1/2 from �, producing the function �(1) = �ϑ(�). We
continue in this fashion with N reflections in each of d directions, producing
the function �(Nd).

(2⇥2)

=

Figure 1. Second reflection (N = 2) in case n = 1 and d = 2.
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We illustrate in Figure 1 the geometric configuration, starting from a
function � in the plane (d = 2) that is localized in a unit square (n = 1).
After N = 2 reflections in the direction of each of the two coordinate axes,
one obtains �(2×2). This function is composed of 16 reflections of �, each a
function also denoted by �, as well as functions in the regions bounded by
bonds denoted by dotted lines, that connect these squares whose corners lie
on nearest-neighbor lattice sites. Continuing reflections in this way results in
2Nd functions � after N reflections in each of d coordinate directions.

Iterating the reflection bound of Proposition 8, we obtain

Proposition 9. In the situation described above,

〈�〉 6 〈�(Nd)〉1/2Nd . (IX.1)

In a similar fashion, one can iterate various elementary reflection bounds
to establish other multiple-reflection bounds.
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