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Abstract. We present a 3D, topological picture-language for quantum information. Our approach combines

charged excitations carried by strings, with topological properties that arise from embedding the strings in
the interior of a three-dimensional manifold with boundary. A quon is a composite that acts as a particle.

Specifically a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We

interpret multi-quons and their transformations in a natural way. We obtain a new type of relation, a
string-genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain

a topological interpretation of the C∗ Hopf algebra relations, that are widely used in tensor networks. We

obtain a 3D representation of the Controlled NOT or CNOT gate (that is considerably simpler than earlier
work) and a 3D topological protocol for teleportation.

Significance

We give a new three-dimensional, picture-language for quantum information. This language is based on an
inherently 3D pictorial representation of particle-like excitations (quons), and of transformations acting on
them. Mathematical identities and quantum information protocols are expressed through deformations of
these pictures. We explore our language, highlighting conceptual insights, 3D visualizations, and suggestive
intuition that it motivates for understanding algebra and quantum information.

1. Introduction

Topological quantum information was formulated by Kitaev [1] and Freedman et al. [2]. Here we formulate
a 3D topological picture-language that we call the quon language—suggesting quantum particles. It leads to
strikingly elementary mathematical proofs and insights into quantum information protocols. In our previous
work we represented qudits, the basic unit of quantum information, using charged strings in 2D. This fits
naturally into the framework of planar para algebras [3, 4, 5, 6]. We call this our two-string model.

We also found a four-string model in 2D, in which we represent a 1-qudit vector as a neutral pair of
particle-antiparticle charged strings [3, 4]. These charged strings have the properties of parafermions. The
presence of charges lead to para-isotopy relations, which reflect the parafermion multiplication laws. Neutral
pairs satisfy isotopy, a very appealing property. However, braiding two strings from different qudits destroys
individual qudit neutrality, and this problem seemed unsurmountable for multi-qudit states. So can one
isolate those transformations that map the neutral pairs into themselves?

Here we solve this problem by defining quons and the quon picture-language. We embed the neutral pairs
of charged strings representing qudits, into the interior of a 3-manifold. The quon language has the flavor
of a topological field theory with strings. The resulting composites of 3-manifolds and strings give us quon
states, transformations of quons, and quon measurements. However the composites contain a further new
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aspect: there are topological relations that involve both the strings and the manifolds. We call them joint
relations. These joint relations provide basic grammatical structure as well as insight into our language.

In §11, we see that if a neutral string surrounds a genus in the manifold, then one can remove them both.
In §12 we use this joint relation to obtain an elementary understanding of Frobenius and C∗-Hopf algebra
relations stated in §10. These relations are key in tensor network theory. In §13 we see that our construction
even provides four-string structure for unitary modular tensor categories, with quons a special case.

2. Basic Grammar

2.1. The 1-quon space. We represent a 1-quon by a heimisphere, with no input points and four output
points. Transformations of 1-qudits have four input and four output points in a cylinder, so we call this a
four-string model. We represent a 1-quon measurement by a hemisphere with four input points and no output
points.

In case a quon is a qudit of degree d, one has a simple representation for a 1-quon basis: the interior of a
hemisphere contains two charged strings, each linking two of the output points. The value of the charge on
one sting may equal either 0, 1, . . . , d− 1 ∈ Zd, while the other string carries the negative of that charge. For
d = 2 the quons reduce to Majorana fermions.

The four-string model for a qudit found in §5.3 of [3] arose as a natural generalization of Kitaev’s picture [7]
of a spin as a pair of fermions. The four strings arise as we represent the Pauli matrices X,Y, Z by four
parafermions. In our reinterpretation, we replace the two fermions by a pair of parafermion/anti-parafermion
unitaries with opposite charge. We represent transformations on 1-quons as a box with four input points and
four output points, embedded in a three-manifold. We describe various bases in §5.

2.2. Multi-quon space. Multi-quons have a hemisphere for each 1-quon. A transformation on n-quons has
charged strings in a three ball with n input handles and n output handles, each containing four strings. This
representation leads to a natural multi-particle structure; it allows us to analyze the full Hilbert space for
multi-quons, with each individual quon remaining a neutral pair.

2.3. Quons as topological algebra. Picture-language for tensor networks arose in Penrose [8], Deutsch [9],
and in Dür, Vidal, and Cirac [10]. The Hopf algebra axioms were studied in tensor networks by Lafont [11].
Abramsky, Coecke, and others studied quantum information extensively from a categorical point of view,
and found many applications in tensor networks [12, 13, 14, 15, 16, 17, 18]. Vicary and Reutter have studied
tensor networks from a higher category and from a planar algebra point of view [19, 20].

Our quons live in 3D space, and thereby capture categorical structures in two directions. We obtain
Frobenius algebras in the X-direction and the Y -direction, corresponding respectively to the COPY and SUM
maps in tensor networks. We explain these concepts in §10. They define the underlying Hilbert space as a
C∗-Hopf algebra, as explained in §12. Moreover, the string Fourier transform FS is a 90◦ rotation around the
Z-axis. Conjugation by FS maps one Frobenius algebra to the other. This gives a topological interpretation
of the algebraic axioms of Hopf algebras.

Algebraic relations arise from the invariance of certain elementary diagrams under topological isotopy. It
is significant that different algebraic conditions have the same topological representation. In other words,
diagrams that are equivalent up to isotopy can have different algebraic meanings when they are located at
different positions. We have already used this philosophy in our two-string model to design protocols in a
topological way [5, 6]. Although 3D braiding appears in many places, e.g. [1, 21, 2, 22, 23, 24, 25], we believe
that our present work is the first to combine charged strings with 3D manifolds.

Using these diagrams, in §9 we obtain a 3D representation of the CNOT map and the quantum teleportation
protocol. The teleportation protocol becomes a topological protocol in the quon language.
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3. Parafermion algebras

The parafermion algebra PFn of order d is a ∗-algebra with unitary generators cm, m = 1, 2, · · · , n, which
satisfy

cdm = 1 and cmcm′ = q cm′cm for 1 ≤ m < m′ ≤ n. (1)

Here q ≡ e 2πi
d and i ≡

√
−1. Consequently c∗j = c−1j = cd−1j , where * denotes the adjoint. Majorana fermions

arise from the case d = 2. The Jordan-Wigner transformation gives the isomorphism PF2n
∼= Md(C)⊗n to

tensor products of d× d matrices. The parafermion algebra PFn has a basis {cα}. Here cα = cα1
1 · · · cαnn , and

αk ∈ Zd. The charge of cα is defined to be |cα| =
∑n
k=1 αk in Zd. The zero-charged elements PF 0

n form a
subalgebra of the parafermion algebra PFn, namely the neutral subalgebra.

3.1. Parafermion planar para algebras (PAPPA). Given 1 6 m 6 n, our diagrammatic representation
for cαmm , with αm = k, as explained in [3], is

ckm ←→ ... ...k ,

where the mth string is labeled by k. In our notation we have the relations

Multiplication:
`

k
= k + ` , d = = 0 .

Para isotopy: · · ·
k

`
= qk` · · ·

k

`
. (2)

The strings between k-charged and `-charged strings are not charged. Take ζ to be a square root of q, such
that

ζd
2

= 1 . (3)

We can interpolate between the diagrams in (2) as a

Twisted product: · · ·k ` := ζk` · · ·
k

`
. (4)

In the PAPPA model, the charged strings satisfy:

• ρπ(cj) = ζj
2

cj , where ρπ is a rotation by π on the plane. Then ρ2π(cj) = qj
2

cj for the 2π rotation
ρ2π.

• j = 0, 1 ≤ j ≤ d− 1, and = δ =
√
d.

• Let ω = 1√
d

∑d−1
j=0 ζ

j2 . This is a phase, as shown in Proposition 2.15 of [3]. Then

=
1√
d

d−1∑
j=0 j

-j

=
1√
ωd

d−1∑
j=0

ζj
2

j

-j

.

Using the above definition of braiding, we can establish the braided relation that any neutral diagram can
move above or under the strings, see [5]. Therefore the neutral diagrams can be lifted to the 3D space.
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3.2. Categorical approach to the neutral part of the parafermion algebra. For readers who are
familiar with category theory, one can consider the neutral diagrams as morphisms in a monoidal category.
The neutral part of PAPPA is the Zd unshaded subfactor planar algebra. It is a Z2 graded unitary fusion
category. Its even part is the monoidal category V ecZd , whose simple objects Xg are labeled by group
elements g in Zd indicating the fusion rule. It has only one odd simple object τ = τ , where τ is the dual
of τ , such that τ2 = γ =

⊕
g∈Zd Xg. Thus γ is a Frobenius algebra. Then the neutral subalgebra of the

parafermion algebra is given by PF 0
n = hom(τn, τn).

4. Details of the quon model

4.1. Quons. An n-quon is represented by n hemispheres. We call the flat disc on the boundary of each
hemisphere, a boundary disc. Each hemisphere contains a neutral diagram with four boundary points on its
boundary disc. The dotted box designates the internal structure that specifies the quon vector. For example,
the 3-quon is represented as

v1 v2 v3 . (5)

Here vj labels a 1-qudit vector given by neutral diagrams with four boundary points in the hemisphere. Here
we orient the boundary disc of the hemispheres to lie on the X-Y -plane in the 3D space.

4.2. Transformations. An n-quon transformation is represented by a neutral element T in PF4n =
hom(τ4n, τ4n) embedded in a 3-manifold, isotopic to a 3D ball. The 3-manifold has n boundary discs
on the top and n at the bottom. Each disc contains four boundary points of T . For example, a 3-quon
transformation T will have the representation:

T . (6)

4.3. Isotopy of Neutral Diagrams. In addition to the relations for charged strings, we allow isotopy of
strings in 3-manifolds. We define a relation for 3-manifolds: if a 3D-ball has no diagram inside, then it can
be removed. Moreover we define a joint relation between diagrams and 3-manifolds.

Suppose T ∈ hom(τm, τn). Let Bm be an orthonormal basis (ONB) of hom(τm, τm), and let Bn be an
ONB of hom(τn, τn). We define the relation

T

· · ·

· · ·

:=
∑
α∈Bm

T

α

α∗

· · ·

· · ·

=
∑
β∈Bn

T

β

β∗

· · ·

· · ·

(7)

Basic linear algebra shows that the second equality always holds. It says that the relation is well-defined
up to isotopy of neutral diagrams in 3-manifolds. By this relation, the picture (6) reduces to a linear sum of
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pictures of the following form:

w∗1 w∗2 w∗3

v1 v2 v3

(8)

If we take vi, wi to be elements in an ONB of hom(1, τ4), then these pictures represent matrix units
of qudit transformations. Therefore we obtain a representation of quons and transformations by neutral
diagrams in 3-manifolds modulo relations. To simplify the notations, sometimes we ignore the 3-manifold, if
there is no confusion.

5. 1-Quon bases

5.1. Qubit case. The space of 1-qubit states is known as the Bloch sphere. Vector states lie on the surface.
The antipodes for a unit 3-vector ±~n are assigned the eigenvectors of nxX + nyY + nzZ, where X,Y, Z
are the Pauli matrices. The eigenvalues are ±1. The usual convention is to let the eigenvectors of Z be
|0〉 = |0Z〉 at the south pole and |1〉 = |1Z〉 at the north pole. Then there are three fundamental sets of
bases of the 1-qubit space for nx = 1, etc. They are |0X〉 = 1√

2
(|0〉+ |1〉), |1X〉 = 1√

2
(|0〉 − |1〉), and likewise

|0Y 〉 = 1√
2
(|0〉+ i |1〉), |1Y 〉 = 1√

2
(|0〉 − i |1〉). The Bloch sphere can be drawn as:

|0〉+ |1〉|0〉 − |1〉

|1〉

|0〉

|0〉+ i |1〉

|0〉 − i |1〉

5.2. The general 1-quon case. In the quon model, the three different ways of connecting the four boundary
points give the X, Y , Z-basis of the 1-quon space. For k = 0, 1, . . . , d− 1 ∈ Zd,

• Z-basis: |kZ〉 = 1√
d k -k

• X-basis: |kX〉 = 1√
d

k -k

• Y-basis: |kY 〉 = 1√
d k -k

These are the three eigenbases of the three unitary Pauli matrices. The matrices are given diagrammatically
in [3], respectively as

Z = -11 , X = -11 , Y = 1-1 . (9)
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In the quon model we represent the basis of the 1-quon space by a pair of strings with opposite charges,
embedded in a hemisphere, and exiting the bottom. The algebraic adjoint operation is given by a charge-
inverting, geometric reflection along the Z-direction. Therefore a measurement is represented by a pair of
strings with opposite charges in the reflected hemisphere:

.

The charge represents the result of the measurement.

6. 1-quon Clifford group

The 1-quon transformations {X,Y, Z, F,G} are generators of the 1-quon Clifford group. Their algebraic
definitions are given by:

X |k〉 = |k + 1〉 , Y |k〉 = ζ1−2k |k − 1〉 , Z |k〉 = qk |k〉 ,

F |k〉 =
1√
d

d−1∑
i=0

qkl |l〉 , G |k〉 = ζk
2

|k〉 . (10)

When we consider a 1-quon as a vector state, the quon transformations are defined up to a phase. These 1-quon
transformations form a group Z2

d o SL(2,Zd) as shown in [3]. The Pauli matrices are given diagrammatically
by (9), while

F = = , G = = . (11)

7. n-Quon Clifford group

Let CX be the controlled X transformation. For the qubit case it becomes CNOT. The n-qudit Clifford
group is generated by {X,Y, Z, F,G,CX}. We represent the qudit transformation CX by neutral diagrams in
3-manifolds.

It is more natural to represent these neutral diagrams in the 3D space. In the 3D space, we label the
four boundary points as 1,2,3,4 corresponding to the order of the boundary points of the 2D diagrams. The
order indicates the choice of basis in the 3D space. We discuss more about CX and the 3D representations in
§10–12.

2D projection of CNOT
1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

3D CNOT

−→

4
1

3
2

4
1

3
2

2
1

3
4

2
1

3
4

Earlier 2D representations of approximate multi-qubit CNOT gates are complicated; some even resemble a
musical score, as in Figure 3 of reference [26]; see also [27]. Exact 2D qudit CNOT representations appeared
in [28] for odd d, where the complexity of the representation depends on d.
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8. Resource states

The generalized Bell states for qudits are given by B+ = d−1/2
∑
k∈Zd

|k, k〉 and B− = d−1/2
∑
k∈Zd

|k,−k〉.

Diagrammatically:

1 12 23 34 4 , 1 2 3 4 3 4 1 2 . (12)

The order 3,4,1,2 indicates the action of F 2 on the second qudit. One can check the identifications by
the joint relation. The corresponding multiple-qudit generalizations of the Bell state are known as the
Greenberger-Horne-Zeilinger (GHZ) state [29] and Max. We give their algebraic definitions in §10, and their
3D representations in §12.

9. Teleportation

In the quon model, we represent the teleportation protocol by the following diagrammatic protocol using
the X-basis:

j -j

k
-k

k -k

j

-j

4

1

3

2

1

2
3

4

2

1
4

3

F
Z

X

B−

The pair of oppositely-charged-strings is neutral, thus it is defined in the 3D space. It represents the
teleportation process in a topological way. Moreover, it shows the one-to-one correspondence between the
diagrammatic representation of this protocol and the algebraic representation in the teleportation protocol of
Bennett et al [30], illustrated to the right of the quon-language diagram.

10. Bi-Frobenius algebras

In tensor networks, one decomposes the qudit CNOT gate CX into COPY and SUM, defined algebraically
by planar diagrams.

CNOT =
∑
k,j∈Zd

|k + j, j〉〈k, j| :

COPY =
∑
j∈Zd

|j, j〉〈j| :

SUM =
∑
j∈Zd

|k + j〉〈k, j| :
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Using the “spider” notation of [15], we represent the qudit transformation
∑
k∈Zd

n entries︷ ︸︸ ︷
|k, k, . . . , k〉

n′ entries︷ ︸︸ ︷
〈k, k, . . . , k| by

the diagram

· · ·

· · ·
, and we represent

∑
|k|=|j|

|~k〉〈~j| by the diagram
· · ·

· · ·

. In particular, one represents

the state |0〉 by . We have the duality induced by the Fourier transform F between the two spiders.

· · ·

· · ·

= dn/2−1

· · ·

FF F

· · ·

F−1F−1 F−1

, (13)

where n is the number of boundary points. This generalizes the duality between the resource states analyzed
in [5]:

|Max〉 = d
1−n
2

∑
|~k|=0

|~k〉 , |GHZ〉 =
1√
d

∑
k∈Zd

|k, k, · · · , k〉 .

In particular, one represents

d−1∑
k=0

|k〉 =
√
d F by .

The adjoint transformations are represented by the vertical reflections of these diagrams. It is known that
both trivalent vertices are Frobenius algebras. That means the following relations hold for , , and

similarly for , :

= , (14)

= . (15)

One can flip the boundary points of a black/white spider from top to bottom or the other way using caps
or cups labeled by a black/white bullet. Thus each Frobenius algebra has a compatible pivotal structure.
However, the two Frobenius algebras do not share pivotal structures. A composition of the cap and the cup
with different colored bullets is not the identity map. Instead it is the antipode map F2

S = F 2, where FS is
the string Fourier transform defined in §2.3,

= = F 2 . (16)

In the quon model, we can represent these maps in a consistent way by strings in 3-manifolds, such that
the algebraic relations become topological isotopy. The COPY map is represented by

.
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One can check that this diagrammatic definition coincides with the algebraic definition by (7). By this
representation, the algebraic conditions of the Frobenius algebra become topological isotopy in the quon
model.

11. The String-Genus Joint Relation

In case we have a diagram of the form: a closed neutral string surrounds a genus of the manifold, then we
can remove both, up to a scalar. When m and n are odd numbers, we have

· · · · · ·

m n

= d−1/2 · · · · · ·

m n

(17)

Note that τm, τn are multiples of τ . It is enough to prove the relation for m = n = 1. In this case, it follows
from the relation (7).

If m or n is even, by relation (7), then the diagram is 0. Thus if the diagram is a part of a non-zero
transformation, then the m and n have to be odd numbers. In this case, the relation means that if there is a
circle around a genus of the 3-manifold, then we can remove the circle and the genus by multiplying a scalar
d−1/2.

12. Topological Relations for C∗-Hopf Algebras

A more conceptual way to look at pictures in the quon model is to assign the four boundary points of
the quon to the corners of a square in a plane orthogonal to the Z-axis. The white and black bullets in the
spiders indicate diagrammatic operations in X and Y -directions on the 2D plane. For example, if we look at
this 3D diagram from the top along the Z-direction, then the picture for the Z-basis in §5.2 is given by

1√
d •

•

•

•-k

k

,

for k ∈ Zd. Here we only draw the boundary circle of the 3-manifold to simplify the picture. The pictures for
COPY and SUM become respectively

•

•

•

•

•

•

•

•

•
•
•
• and d−1/2

• •
• •
• •
• •

•

•

•

•

• •
• •
• •
• • .

Similarly we can represent the white and black spiders as strings in 3-manifolds in the quon model. The
white spiders are expended in the X-direction and the black spiders are expended in the Y -direction. In
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particular, the resource states |GHZ〉 and |Max〉 (for 3-quons) are respectively:

•

•

•

•

•

•

•

•

•

•

•

•

,
• • •
• • •
• • •
• • •

.

From this point of view, the Fourier transform is a 90◦ rotation around the Z-axis, which explains the
duality of the two Frobenius algebras in (13) in a geometric way. Moreover, one can check that the relation
(16) also becomes an isotopy in the 3D space in the quon model.

Furthermore, this pair of Frobenius algebras satisfy the following additional relations (18)–(21). These
relations define Zd as a C∗ Hopf algebra, where F 2 is the antipode map of the Hopf algebra and the involution
is an anti-linear map which reflects the diagrams vertically. Note that if a pair of Frobenius algebras satisfy
these relations, then the underlying d dimensional Hilbert space becomes a Hopf algebra. This has been
observed in [11, 15].

= (18)

= (19)

F 2 = F 2 = (20)

= (21)

Now we give an interpretation of these relations as topological isotopy in 3D. Note that relation (18)
follows from the definition of the COPY map. By isotopy in our quon model, relations (19) and (20) are
exactly the same diagrams as the relation (18). The most interesting relation is (21), and we explain that
relation in detail.

Relation (21) becomes topological isotopy, when we use the string-genus joint relation established in §11,
namely the joint relation (17). Then (21) is given by the isotopy (22). Thus we have given a topological
interpretation for the C∗ Hopf algebra axioms for Zd.

•

•

•

•

•

•

•

•

•
•
•
•

•

•

•

•

•

•

•

•

•
•
•
• = d−1/2

•

•

•

•

•
•
•
•

•

•

•

•

•
•
•
• (22)
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There is a one-to-one correspondence between C∗ Hopf algebras and irreducible, depth-two subfactor
planar algebras [31, 32]. In this case, d is the global dimension of the C∗-Hopf algebra. Moreover, the even
part of the planar algebra is the representation category of the Kac algebra. The odd part has only one
simple object τ , so (17) also holds. In the above interpretation, we only use (shaded) planar diagrams without
braids in 3-manifolds. So this topological interpretation works for any finite dimensional C∗ Hopf algebra.
From this point of view, many algebraic properties of C∗-Hopf algebras reduce to topological isotopy.

13. Quon Language for a unitary modular tensor category

We can define the quon language for any unitary modular tensor category C , so that the 1-quon basis
corresponds to the set of simple objects OB in C . If we take C to be the unitary modular tensor category,

such that its fusion ring is Zd and its modular S matrix is qkl, where q = e
2πi
d , then we get back the quon

language for qudits defined by PAPPA.
For each X ∈ OB, we obtain a simple object X̃ := X ⊗X in C ⊗ C , where X is the dual of X. Take

γ =
⊕

X∈OB X ⊗X in C ⊗ C . It is known that γ =
⊕

X∈OB X ⊗X is a Frobenius algebra in C ⊗ C . Thus
Pn,+ = hom(1, γn) is a subfactor planar algebra generated by τ , such that γ = τ ⊗ τ . It is proved in [33]
that this planar algebra is unshaded. That means τ = τ .

Note that hom(1, τ4) ∼= hom(1, γ2). This space has an orthonormal-basis given by the canonical inclusion
from 1 to (X ⊗X)⊗ (X ⊗X), for X ∈ OB. We call the generalized single-particle state a 1-quon. Thus the
dimension d of the 1-quon space is the cardinality of OB. Furthermore, the string Fourier transform on the
1-quon space is the S matrix of the unitary modular tensor category C [33].

We generalize the quon language as follows: We label each of the four boundary points by the object τ .
The diagrams in the 3-manifolds are given by morphisms in C ⊗ C . The representation for an n-quon is
given by morphisms in hom(1, τ4) in n hemispheres as in (5). The n-quon transformations are represented
by morphisms in hom(τ4n, τ4n) in a 3-manifold as in (6). The relations between diagrams and 3-manifolds
are also defined by (7). Then n-quon transformations also reduce to a linear sum of the form in (8) which
represent matrix units. Therefore the n-quon transformations are transformations on the dn dimensional
Hilbert space.

In general, the quon language can be defined for any subfactor planar algebra [21], if we do not require
τ = τ . In this case, the diagrams in the 3-manifolds with 4n boundary points are given by a shaded planar
diagram in the 2n-box space of planar algebras. We have used this general case to give the topological
interpretation of the C∗-Hopf algebra relations.
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